
Journal of Statistical Physics, Vol. 36, Nos. 5/6, 1984 

The Fractal Interpretation of the Weak 
Scattering of Elastic Waves 

Bruce J. West  1'2'3 and Michael F. Shlesinger 4 

Nondestructive methods, in particular the measurement of elastic waves, have 
become increasingly important in determining the microstructure of many 
materials in recent years. One of these methods is observing the attenuation of 
ultrasonic waves of known amplitude and direction, e.g., in granular metals. The 
waves are exponentially attenuated with distance with a frequency-dependent 
attenuation fractor. The attenuation factor can be decomposed into two parts: 
absorption and scattering. Experimentally, the absorption part varies linearly 
with frequency, while the scattering part has a noninteger power law behavior, 
the exponent of which is related to the strength of the material. Theoretically, at 
long wavelengths the exponent is 4 (Rayleigh scattering) while for grain-sized 
wavelengths it is 2 (diffusive scattering). We relate the attenuation factor to the 
forward scattering amplitude which is related to the frequency dependence of the 
scatterers and their cross sections. We attribute the noninteger attenuation 
exponent to a fractal distribution of grain shapes and sizes. 

KEY WORDS: Random media; fractals; elastic waves; nondestructive 
evaluation; ultrasonics. 

1. INTRODUCTION 

The s tudy of  the p r o p a g a t i o n  o f  waves  in r a n d o m  media ,  and in pa r t i cu la r  

the effects o f  mul t ip le  sca t ter ing  on the w a v e  t ravers ing  the media ,  had  its 

first success  wi th  the inves t iga t ion  o f  Fo ldy .  m He  was interes ted in such 

processes  as the mul t ip le  sca t te r ing  o f  a sound  w a v e  by the wate r  drople ts  o f  

a fog where  in ter ference  effects m a y  not  be neglected.  He  cons idered  the first  

and second  m o m e n t  proper t ies  o f  sca lar  waves  t rave l ing  in a m e d i u m  of  
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randomly distributed, isotropic scatterers, and calculated the index of 
refraction. Lax (2) later generalized this self-consistent treatment to include 
such effects as inelastic scattering, partial or complete ordering of the 
scatterers in addition to random scatterers and the effects of anisotropy. He 
also considered the quantum mechanical determination of the exact index of 
refraction in crystals containing defects, i.e., scattering centers. The index of 
refraction is the important physical quantity because it determines both the 
wavelength and the rate of attenuation of the propagating wave in the 
scattering region. 

More recently these considerations have been extended to the study of 
multiple scattering of ultrasonic waves in elastic media with randomly 
positioned scatterers. (3'4) The motivation for these latter studies is the use of 
ultrasonic waves as probes of the material. Material properties such as the 
distribution of grain size in polycrystalline materials, the degree of 
homogeneity, the existence of macroscopic cracks, inclusions, twin boun- 
daries, dislocations, etc. all affect fracture micromechanisms and fracture 
control technology. The basis of the ultrasonic approach is the observation 
that the amplitude of low-frequency (long-wavelength) ultrasonic waves (of 
known amplitude and direction) are exponentially attenuated with distance, 
i.e., the wave intensity decays as exp[-a@)z] ,  where z is the line-of-sight 
distance between the source and receiver and a(~o) is a frequency-dependent 
attenuation factor. 

The standard theories of wave attenuation partition a(co) into two parts; 
the absorption attenuation coefficient aa(~o ) and the scattering attenuation 
coefficient a~(co). (s) The absorption of energy from the ultrasonic wave arises 
from dislocation damping as well as magneto-elastic and thermo-elastic 
hysteresis and leads to the coefficient 

aa(CO ) =Ao9 (1.1) 

The discontinuity in acoustic impedance occurring at grain boundaries and 
defect sites, on the other hand, leads to elastic scattering. For a 
polycrystalline material of average grain size D an ultrasonic wave of 
wavelength 2 and frequency o) will have the scattering attenuation coef- 
ficient: for 2 >> D (Rayleigh scattering domain) 

as(f) = S 1 O 3 0 )  4 (1.2) 

for )~ ~< D (stochastic scattering domain) 

a s ( f )  = S2Dc~  2 (1.3) 
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and for 2 .~ D (diffusive domain) 

a s = S J D  (1.4) 

where S1, $2, and S 3 are related to the elastic moduli and the longitudinal 
and transverse sound speeds in a single crystal. Experimental data are fitted 
by (1.2)-(1.4) and the characteristic value of D is inferred. 

In typical metals one encounters a range of grain sizes so that neither 
the Rayleigh nor stochastic scattering limits are appropriate. Instead both 
types of scattering can be simultaneously present. In addition the absorption 
parameter A may be weakly dependent on frequency. Thus none of the 
attenuation coefficients (1.1)-(1.4) are used in practice; instead the 
phenomenological expression 

a(ag) = Be) u, 1 ~< ~ ~< 4 (1.5) 

has been adopted, where B and/ l  are frequency-independent constants. It is 
expected, however, that variations in the microstructure of the materials will 
lead to variations in B and/~, so that these parameters can be expressed in 
terms of certain structural properties of the material. We show below that the 
parameter/~ is a measure of the density of scatterers in the material.(6) 

The nonintegral value o f / l  in (1.5) suggests that the volume of space 
occupied by the scatterers is also nonintegral. We argue in Section 3 that the 
volume occupied by the scatterers is fractal and that/2 is a direct measure of 
the dimensionality of this "volume." To construct this argument we review in 
Section 2 the theory of weak multiple scattering of an elastic wave in a 
random media and determine an analytic expression for the complex index of 
refraction. 

2. ELASTIC WAVES 

Consider a small amplitude disturbance in an elastic solid ~(x, t). The 
vector ~(x, t) is the displacement of a physical point at the space time 
location (x, t) in the solid away from its equilibrium position, i.e., in 
equilibrium the homogeneous solid is free of stress and strain. From the 
conservation of momentum equation and in the absence of any body force 
the displacement field in a harmonic solid satisfies the equation of motion 

o 

((x, t) = v2r x, t) 
20 + po, 

pO V(V. ~(x, t)) (2.1) 

where 2 o and/~o are the Lam6 parameters of the homogeneous medium and 
pO is the uniform density. The homogeneous equation (2.1) describes the 

822/36/5-6-18 
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propagation of a vector displacement in an elastic solid free of defects. In a 
real material the density and Lam~ parameters may vary owing to the 
presence of grain boundaries, cracks, flaws, inclusions, voids, etc. We 
indicate the inhomogeneous properties by 

p=p~ 2 = 2 ~  U = p ~  +6p (2.2) 

where 6p, 62, and 6p indicate the allowed inhomogeneities. 
For a harmonic disturbance of frequency ~o, i.e., ~(x, t ) =  r/(x)e -~ot, the 

inhomogeneous equation of motion replacing (2.1) is 

p0 2~ + u ~  v ( v . . ( x ) )  = -~o 2 6p e~ + ~--~ V 2r/(x) + p0 p-~ r/(x) + V �9 6P (2.3) 

where the variation in the stress tensor P is 

5Pu(x, t) = 52(x)V �9 q(x) 5 u + 5p(t)[~z~b(x ) + ?flh(x)] (2.4) 

The solution to (2.3) can be expressed in terms of the Green's tensor G~ 
by 

where 

llJ(X) = 710(X) ~- Z f d3X' GOI(X -- Xt) Vlm(X t) ~Zm(Xt) 
l,m 

(2,5) 

,i 2 e,  Jvc e' RJ sll - -  5 u  c~ic~j - -  - ( 2 . 6 )  G~](x - -  x') - -  4~pO~2 v-':'~- R R R 

R -  I x - - x '  I is the distance from the inhomogeneity at x'  to the point of 
observation x, v s = (po/Po) ~/2 is the speed of a shear (transverse) wave, and 
vc = [(20 + 2/~0)/Po ] 1/2 is the speed of a compression (longitudinal) wave. In 
(2.5) r/Y(x) is the solution to the homogeneous equation (2.1). In principle 
(2.5) is the complete solution to the scattering problem, since we know the 
analytic form of the Green's tensor and (2.5) can be iterated from a given 
homogeneity. In the present case we are more interested in obtaining an 
analytic expression for the index of refraction, albeit approximate, than in 
determining the properties of (2.5). 

To facilitate the discussion let us introduce the Fourier transform of a 
function F(x) by 

P(k) = ~ d3x e-ik'XF(x) 
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so that (2.5) can be rewritten 

Oj(k) = O~ = ~.V dOt(k)[ V, m Om ](k) 
l,m 

where if s is a unit vector along the j direction, 

Oj(k) = ~j 

O~ ) = d f i (k  - ko) 

4O(k) - 1 l ~  ~, [ 1 
k2 --- +/~SUt k 2 _  4 ~ p o < o  2 ~s  ~ _ < o ~ / ~ ,  ~ <.~/~<~ 

and 
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(2.7) 

[V m tTml(k) =-f d3x ' e-i*'x'V,m(X ') rlm(X') (2.8d) 

If we multiply (2.7) on the left by a unit vector d i and sum over j,  and if 
dj =/~j, then from Oubernatis el al. (4) we have 

Z fc'fe-ik'~<'Vlm(X')rlm(X')d3x' =4~p~ (2.9) 
l,trt 

where A(k) is the longitudinal, forward scattering amplitude for a single 
scatterer and p is the density of scatterers. Substituting the quantities (2.8) 
and (2.9) into (2.7) and simplifying yields 

0 9  2 

k==~.2 + pA(k) (2.10) 
Vc 

Similarly if the initial wave is transversely polarized then ~ i  cTj~j. = 0 and (4) 

lc, f e-ik'x'V,m(X')rlm(X')d3x'=47rp~ (2.11) 
l,m 

where B(k) is the transverse, forward scattering amplitude so that again by 
substitution into (2.7) we obtain 

(,0 2 

k 2 + pB (k) (2.12) = ..-Z-f- 
Us 

Equations (2.10) and (2.12) can be summarized in the single equation 

k 2 = k~ + 47~pf(k) (2.13) 

(2.8a) 

(2.8b) 

1 lk2t 
k 2  - 2 2 

(2.8c) 



784 West 

where k 0 is the incident wave number of the acoustic wave, co/v c for a 
longitudinally polarized wave and co/v s for a transversely polarized wave. 
The function f ( k )  is the associated forward scattering amplitude for a single 
scatterer in these two cases and is complex. For weak scattering we neglect 
the interference among scatterers and expand (2.13) to obtain 

k = k o + 2 n p R e f ( k o ) / k  o + 2 n i p I m f ( k o ) / k  o (2.14) 

Using the optical theorem we relate the total cross section of the scatterer to 
the imaginary part of the scattering amplitude, i.e., a t = 4 n l m f ( k o ) / k  o. Thus 
the attenuation coefficient a(co) = 2 I m k ,  with 6 ==- a t / 4n  is 

a(co) = p6  (2.15) 

We have thus shown directly from the integral equation (2.1) that if one 
neglects the correlations among the individual scatterings, that a transversely 
or longitudinally polarized ultrasonic wave propagating through an 
inhomogeneous elastic solid has a decay rate given by the product of the 
total cross section of an individual scatter and the density of scatterers. This 
result agrees with that of Foldy and Lax for scalar waves. 

3. FRACTAL DENSITY OF SCATTERERS 

To determine the total frequency dependence of the attenuation coef- 
ficient in (2.15) we utilize two facts: (1) the scattering cross section 6 has the 
frequency dependence co s, where s - - 0 ,  2, 4 from (1.1)-(1.4), and (2)the 
experimental observation that a high-frequency wave interacts with more 
scatterer than does a low-frequency wave. Therefore the density of scatterers 
experienced by the incident wave is frequency dependent, i.e., p =p(co). A 
wave frequency col, will be scattered by N 1 (=Pl V) defects (V is the volume 
of the sample and Pl, the density probed by the frequency col) and a wave of 
frequency co2 will be scattered from N z defects. Thus if co2 < col then P2 < P~. 
For real constants a and b we write 

p (ml )  = bp(co2) = bp(co,/a) with a, b > 1 (3.1) 

which has the scaling solution 

p(co) = const col. b/=. a (3.2) 

The exponent In b/ln a is reminiscent of a fractal dimension, o) 
Fractals are geometric objects having structure on an infinite number of 

scales. As an example consider a three-dimensional distribution of mass 
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points such that the quantity of mass M(R) contained in a sphere of radius R 
increases with distance as 

M(R) oc R F, F ~  3 (3.3) 

The case F = 3 is the familiar situation for a uniform distribution of mass 
points. However, a self-similar distribution of mass points is described by a 
value of F less than 3. In the usual case, when the mass is within a sphere of 
radius R and we have no information on scales below R, then the mass is 
assumed to have a uniform distribution. If we now examine the sphere on a 
finer scale, R ' =  R/a, say, we discover that what we had considered to be a 
single sphere to actually consist of b smaller sphere each of radius R/a. If 
this process of increasing the resolution is continued ad infinitum we arrive 
at the expression (3.3) for the mass distribution with F = l n  b/in a. The 
quantity F is called the fractal dimension, o) 

The attenuation coefficient (2.15) can now be written 

(3.4) 

where B and p are constants and g is given by 

/z = s + In b/ln a (3.5) 

If the material consists of grains such that 2 ~> D then the density of 
scatterers probed by the acoustic wave is unchanged as the frequency is 
increased, provided that we remain in the Rayleigh scattering domain. In this 
case b = 1 so that p = s = 4. In practice the Rayleigh domain sets in at about 
~, ~ 10D. "~ If we are in the scattering domain 2 ~<D then s = 2 in (3.5) and 
experimentally (z) in b/In a ~< 2, i.e., b <~ a 2. Thus the density of scatterers 
increases no more rapidly than the square of the linear scale (a 2) rather than 
as its cube as it would in the usual situation. This result implies that the 
density of scatterers is a fractal in the stochastic scattering domain. Note 
also that the surface of a grain can be quite rough. This roughness consists 
of many scales and may in part be responsible for the fractal behavior 
observed in the phenomenological expression (3.4). 
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